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Using Certification Trails to Achieve Software Fault Tolerance

Abstract
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Gerald M. Masson 3
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We introduce a conceptually novel sad powerful tech-

nique to achieve fault tolerance in hardware and soft-

ware systems. When used for software fault tolerance,

this new technique uses time and software redundancy

and can be outlined as follows. In the initial phase,

a program is run to solve a problem and store the re-

suit. In addition, this program leaves behind a trail of

data which we call a certification trail. In the second

phase, another program is run which solves the origi-

nal problem again. This program, however, has access

to the certification trail left by the first program. Be-

cause of the availability of the certification trail, the

second phase can be performed by a less complex pro-

gram and can execute more quicHy. In the final phase,

the two results are compared and if they agree the re-

suits are accepted as correct; otherwise an error is indi-

cated. An essential aspect of this approach is that the

second program must always generate either an error

indication or a correct output even when the certifica-

tion trail it receives from the first program is incorrect.

We formalize the certification trail approach to fault

tolerance and illustrate it by applying it to the funda-

mental pr-blem of finding a ndnimum spanning tree.
We discuss cases in which the second phase can be

run concurrently with the first and act as a monitor.

We compare the certification trail approach to other

approaches to fault tolerance. Because of space Um-

itations we have ommited examples of oar technique

applied to the Huffman tree, and convex hull problems.

These can be found in the full version of this paper.

1 Introduction
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, "" In this paper we introduce a novel and powerful tech-

_i nique for achieving fault tolerance in systems. AI-_ _:' though applicable to both hardware and software, we

f-_ restrict our discussion of this technique in the follow-

" lag to software fault tolerance. To explain our new
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technique for software fault tolerance, we will first dis-

cuss a simpler fault tolerant software method. In this

method the specification of a problem is given and an

algorithm to solve it is constructed. This algorithm is

executed on an input and the output is stored. Next,

the same algorithm is executed again on the same in-

put and the output is compared to the earlier output.

If the outputs differ then an error is indicated, oth-

erwise the output is accepted a.s correct. This soft-

ware fault tolerance method req,ires additional time,

so called time redundancy [14, 22]; however, it requires

no additional software. It is particularly valuable for

detecting errors caused by transient fault phenomena.

If such faults cause an error during only one of the ex-

ecutions then either the error will be detected or the

output will be correct.

A variation of the above method uses two separate

algorithms, one for each execution, which have been

written independently based on the problem speciRca-

tion. This technique, called N-version programming[8,
4] (in this case N=2), allows for the detection of errors

caused by some faults in the software in addition to

those caused by transient hardware faults and utilizes

both time and software redundancy. Errors caused

by software faults are detected whenever the indepen-
dently written programs do not generate coincident
errors.

The technique we will describe is designed to achieve

similar types of error detection capabilities but expend

fewer resources. The central idea, as illustrated in Fig-

ure 1, is to modify the first algorithm so that it leaves

behind a trail of data which we call a certification trail.

This data is chosen so that it can allow the the sec-

ond algorithm to execute more quickly and/or have a

simpler structure than the first algorithm. As above,

the outputs of th_ tw,_ ex_e,itions are e,,ml).'tr,.d and

are considered corr,.or only if they agree. Nnt,. how-

ever, we must be careful in defining this method or

else its error detection capability might be reduced

by the introduction of data dependency between the

two algorithm executions. For example, suppose the

first algorithm execution contains a error which causes

an incorrect output and an incorrect trail of data to

F,AC_ BLANK NOT FILMED



Ft:D-'S×TandF3:D×T-'SU(err°r) The !_

,___._ E,ecviie. _._ functions must ..t_ry the foUowing two propertle.: _
i,,_ / .l.c._,_._ _-_____....__. o_,..._

there exists t E I such that

,. r,(d) = (,,,) and and p
(1) for all d _ D _,d for _ l _ T :_

a.

i

_I

u

m

r
i

m

m

i

Figure I: Certification trail method.

be generated. Further suppose that no error occurs

during the execution of the second algorithm. It still

appea:s possible that the execution of the second al-

gorithm might use the incorrect tr_ to generate an

incoirect output which matches the incorrect output

given by the execution of the first a|gorithm. Intu-

itively, the second execution would be "fooled" by the

data left behind by the first execution. The definitions

we give below .'.xdude this possibility. They demand

that the second execution either generates a correct

answer or signals the fact that an ezror has been de-

tected in thedata trail. Finally, it should be noted that

in Figure 1 both executions can signal an error. These
errors would include run-time errors such as divide-by-

sero or non-terminating computation. In addition the

second execution can signal error due to an incorrect
certification trail.

2 Formal Definition of a Certi-

fication Trail

In this section we will give a formal definition of a

certification trail and discuss some aspects of its real-

izations and uses.

Definition 2.1 A problem P is formaliled as a rela-

tion (that is, a set of ordered pairs). Let D be the

domain (that is, the set of inputs) of the relation P

and let S be the range (that is, the set of solutions)

for the problem. We say an algorithm A solves a piob-

iem P iff for all d E D when d is input to A then an

+ E S is output such that (d, +) E P.

Definition 2.2 Let P : D --, S be a problem. Let

T be the set of certificalion traiIj. A solution to this

problem using a certification tn=il consists of two func-

tions Ft and F1 with the following domains and ranges

either (F3(d, l) =, and (d, ,) E P) or

Fl(d, () = error.

The definitions above assure that the error detec-

tion capability of the certification trail approach is

comparable to that obtained with the simple tlme re-

dundancy approach discussed earlier. That is, if tran-
sient hardware faults occur during only one of the ex-

ecutions then either an error will be detected or the

output will be correct. It should be further noted,

however, the examples to be considered will indicate

that this new approach can also save overall execution

time.

The ceztlficatlon trail approach also allows for the

detection of faults in software. As in 2-verslon pro-

gramming, separate teams can wIite the algorithms for
the first and second executions. Note that the speci-

fication now must include precise information describ-

ing the generation and use of the certification trail.
Because of the additional data available to the sec-

ond execution, the specifications of the two phases

can be very different; sim_arly, the two algorltllms

used to implement the phases can be very different.

This is illustrated by the convex huh example in the

full paper. Alternatively, the two algorithms can be

very similar, differing only in data structure manipu-

lations. This is illustrated by the minimum spanning

tree example considered later. When significantly dif-

ferent algorithms are used, the probability that both

algorithms will contain or be effected by faults which

generate matching errors should be reduced. When

very similar algorithms are used it is sometimes pos-

sible to save programming effort by sharing program
code. While this reduces the ability to detect errors

in the software it does not change the ability to detect

transient hardware errors as discussed earlier.

Throughout this section we have assumed that our

method is implemented with software; however, it is

clearly possible to implen)ent the certification trail tech-

nique by using dedicated hardware. It is also possible

to generalize the basic two-level hierarchy of the cer-

tification trail approach as illustrated in Figure 1 to

higher levels. Finally, we note that a wide variety of
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approaches to software and hardware fault tolerance

have been proposed which bear resemblances to the

certificatlon trail approach; we contrast our method

to the most closely related ideas. A more comprehen-

siva comparison appears in the full paper.

3 Minimum Spanning Tree Ex-

ample

In this section we illustrate the use of the certification

trail method by applying it to the minimum spanning

tree problem. Because of space limitations we have

ommited other applications, e.g., to the Huff'man tree

and the convex hull problems. It should be stressed

here that we believe the technique has wide applica-

bility and these problems were chosen shnply for illus-

tration.

The mininmm spanning tree problem has been ex-

amined extensively in the literature and an historical

survey is given in [II]. Our certification trail approach

is applied to a variant of the Prim/Dijkstra algorithm

[19, 9] as explicated in [24]. We will begin our dis-

cussion of the application of the certification trail ap-

proach to the minimum spanning tree problem with

some preliminary definitions.

Definition 3.1 A graph G = (1/, E) consists of a ver-

ier set I/" and an edge set E. An edge is an un-

ordered pair of distinct vertices which we notate as,

for example, iv, to], and we say v is adjacent to w. A

path in a graph from l'l to _ is a sequence of vet-

tices 1's, _'2..... rl, such that [t'i,v_+1] is an edge for

i _. {I ..... k- 1}. A path is a cycle if k > 1 and

vx = _. An acyclic graph is a graph which contains

no cycles. A connected graph is a graph such that for

all pairs of vertices v,_v there is a path from v to w. A

t1"ee is an acyclic and connected graph.

Definition 3.2 Let G = (Y, E) be a graph and let to

be a positive rational valued function defined on E.

A subtree of G is a tree, T(V', E'), with V' C V and

E' C E. We say T apans V' and Y_ is spanned by

T. If V' = V then we say T is a spanning tree of G.

The weight of this tree is X'_,_s, u,(e). A minimum

spanning tree is a spanning tree of minimum weight.

3.0.1 Data structures and supported opera-

tions

Before we discuss the minimum spanning tree algo-

rithm, we must describe the properties of the principle

data structure that are required. Since many different

data structures can be used to implement the algo-

rithm, we initially describe abstractly the data that

can be stored by the data structure and the operations

that can be used to manipulate this data. The data

consists of a se_ of ordered pairs. The first element in

these ordered pairs is referred to as the item number

and the second element is called the key value. Or-

dered pai_s may be added and removed from the set;

however, at all times, the item numbers of distinct or-

dered pairs must be distinct. It is possible, though,

for multiple ordered pairs to have the same key value.

In this paper the item numbers are integers between 1

and n, inclusive. Our dehult convention is that i is an

item number, k is a key value and h is a set of ordered

pairs. A total ordering on the pairs of a set can be

defined lexicographicaily as follows: (i, k) < (i',/c') iff

k < k' or (k = k' and i < i'). Our data structure

should support a subset of the following operations.

member(i, h) returns a boolean value of true if h con-
tains an ordered pair with item number i, other-

wise returns false.

inJert(i, k, h) adds the ordered pair (i, k) to the set h.

delete(i,h) deletes the unique ordered pair with item
number i from h.

changekey(i,k,h) is executed only when there is an

ordered pair with item number i in h. This pair

is replaced by (i, k).

deletemin(h) returns the ordered pair which is small-

eat according to the total order defined above
and deletes this pair. If h is the empty set then

the token "empty" is returned.

predecessor(i,h) returns the item number of the or-

dered pair which immediately precedes the pair
with item number i in the tnLal ord,-r. If there

is no predecessor then the token _smallest" is

returned.

Many different types and combinations of data struc-
tures can be used to support these operations effi-

ciently. In our case, we will actually use two different
data structure methods to support these operations.
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One n_ethod will be used in the first execution of the

algorithm and another, faster and simpler, method will
be used in the second execution. The second method

relies on a trail of data which is output by the first

execution.

3.0.2 I%':NSPAN alg rithm

Before discussing p:ecise implementation details for

these methods we present the overallalgorithm used

in both executions. Pidgin code for thisalgorithm ap-

pears below. In addition,Figure 2 illustratesthe exe-

cution of the algorithm on a sample graph and the ta-

ble below records the data structure operations the al-

gorithm must perform when run on the sample graph.

The first column of the table gives the operations ex-

cept member and with the parameter h dropped to

reduce clutter. The second column gives the evolving
contents of h. The third column records the ordered

pair deleted by the delctemin operation. The fourth

column records the certification trail corresponding to

these operations and is further discussed below.

The algorithm uses a =greed)'" method to "grow"

a minimum spanning tree. The algorithm starts by

choosing an arbitrary vertex from which to grow the

tree. During each iteration of the algori;hm a new

edge is added to the tree being constructed. Thus, the

set of vertices spanned by the tree increases by exactly

one vertex for each iteration. The edge which is added

to the tree is the one with the smallest weight. Fig-

ure 2 shows thisprocess in action.Figure 2(a) shows

the input graph, Figures 2(b) through 2(e) show sev-

eral stages of the tree growth and Figure 2(f) shows

the finaloutput of the minimun_ spanning tree. The

solid edges in Figures 2(b) through 2(e) represent the

current tree and the dotted edges represent candidates
for addition to the tree.

To efficiently find the edge to add to the current

tree the algorithm uses the data structure operations

described above. As soon as a vertex , say v, is ad-

jacent to some vertex which is currently spanned it is

inserted in the set h. The key value for t, is the weight

of the minimum weight edge between v and some ver-

tex spanned by the current tree. The array element

prefer(v) is used to keep track of this minimum weight

edge. As the tree grows, information is updated b.v op-

erations such as insert(i, k, h) and changekey(i,k, h).

The delctemin(h) operation is used to select the next

vertex to add to the span of the curren: tree. l_ote,

the algorithm does not explicitl.v keep a set of edges

(
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Figure 2: Example for minimum spanning tree algo-
rithm.

representing the current tree. Implicitly, however, if

(v, h) L" returned by dcletemin then prefer(v) is added
to the current tree.

3.0.3 First execution of MINSPAN

In the first execution of the algorith,u. Ihe MINSPAN

code is used and the principle data structure is imple-

mented with a balanced search tree such as an AVL

tree [1], a red-Mack tree [12], or a b-tree [5]. h, addi-

tion. an array of pointers indexed from 1 to n is used.

The balanced search tree stores the ordered pairs in h
and is based on the total orde: described earlier. The

arra.v of pointers is initially all nil. For each ite,n i,

the ith pointer of the array is used to point to the lo-
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Algorithm MINSPAN (G, wei9ht)

Input: Connected graph G - (V', E) where V - {1,..., n}

with edge weights.

Output: Spanning tree of (7 which has minimum weight

1 CHOOSE rootE V

2 FOR ALL u E V, key(u) :-- oo END FOR.

3 h::0;v:= root

4 WHILE v 7_ empty DO

5 re.v(,.,) := -co

6 FOR EACH [v, u,] E E DO

7 IF weight(it,, w]) < key(w) THEN

8 key(w) := weight(Iv , u,l); p_/er(w) := [p, w]

9 IF member(w, h) THEN changekev(w, key(w), h)

10 ELSE insert(w, key{w), h) END IF
11 END IF

12 END FOR

13 (t,,k) := deletemin(h)
14 END WHILE

15 FOR ALL u E V - {root}, OUTPUT(prefer(u))
END MINSPAN

Figure 3: Code for MINSPAN Algorithm

Operatiot; Set of Ordered Pairs Trail

inJert(2,200) (2,200) smallest

insert(6,500) (2,200),(6,500) 2

deletemin (6,500)

insert(3,800) (6,500),(3,$00) 6

changt'key(6,450 ) (6,450),(3,800) smallest

insert(7,505) (6,450),(7,505),(3,800) 6

delete,nin (7,505),(3,800)

insert(5,250) (5,250),(7,505),(3,800) smallest

changekey(7,495 ) (5,250),(7,495),(3,800) 5

deletemin (7,495),(3,800)

changckey(3,350 ) (3,350),(7,495) smallest

inJert(4,700) (3,350),(7,495),(4,700) 7

deleternin (7,495),(4,700)

changekep(4,650) (7,495),(4,650) 7

deletemin (4,650)
del,,temin

deletemin

Table l: Data structure operations and certification
trail for MINSPAN
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cation of the ordered pair with item number i in the

balanced search tree. If there is no such ordered pair

in the tree then the ith pointer is nil. This array allows

rapid execution of operations such as member(i, It) and

delete(i, h ).

The certification trail is generated during the first
execution as follows: When CHOOSE root E V is exe-

cuted in the first step, the vertex which is chosen is out-

put. Also, each time inJert( i, k, h) or changekey( i, k, h)

are executed, predecessor(i, h) is executed afterwards,

and the answer returned is output. This is illustrated
in column labeled =Trail" in the table above.

3.0.4 Second execution of MINSPAN

The second execution of the algorithm also uses the

MINSPAN code; however, the CHOOSE construct and

the data structure operations are implemented differ-

ently than in the first execution. The CHOOSE is

performed by simply reading the first element of the

certification trail. This guarantees the same choice of

a starting vertex is made in both executions. Figure 4

depicts the prindple data structure used which we call

an indexed linked list. The array is indexed from 1 to n

and contains pointers to a singly linked list which rep-

resents the current contents of h. Each element in the

list stores an ordered pair in h except the head of the

list which contains the special ordered pair (0,-INF).

The list is organized such that a traversai front the

head gives the sorted ordering of the current contents

of h from smallest to largest. The ith element of the

array points to the node containing the ordered pair

with the item number i if it is present in h; otherwise,

the pointer is nil. The 0th element of the array points

to the node containing (0,-INF). Initially, the array

contains nil pointers except the 0th dement. We now

show how to implement the data structure operations.

To perform inJert(i,k, h), it is necessary to read

the next value in the certification trail. This value,

say j, is the item number of the ordered pair which is

the predecessor of (i,k) in the current contents of h.
A new linked list node is allocated and the trail infor-

mation is used to insert gh.- node into ,h_ data struc-

ture. Specifically, the jth array pointer is traversed

to ._ node in the linked list. say 1". {If j = "smallest"

then the Oth array pointer is traversed.) The new node

is inserted in the list just after node I" and before the

next node in the linked list (if there is one). "The data

field in the new node is set to (i, k) and the ith pointer

of the arr:ty is set to point to the new node. Figure
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4 shows the insertion of (T,505) into the data struc-

ture given that the certification trail value is G. Figure

3(a) is before the insertion and Figure 3(b) is after ti_e

insertion.

When the inserf operation is performed, some checks

must be conducted. First, tile ith array pointer must

be all before the operation is performed. Second, the

sorted order of the pairs stored in the linked list must

be preserved after the operation. That is, if (i', k') is
stored in the node before (i, 1.) in the linked list and

(i',k") is stored after (i,k), then (i',k') < (i,k) <

(i', k") must hold in the total order. If either of these
checks fails then execution halts and "error" is output.

To perform deltic(i, h) the ith array pointer is tra-
versed and the node found is deleted from the linked

list. Next, the ith array pointer is set to nil. Figure
4 shows the deletion of item number T if one consid-

ers Figure 3{a) as depicting the data structure before

the operation and Figure 3(b) depicting it afterwards.

When the delete operatlov is performed one cite& is

made. If the ith array pointer is nil before the opera-

tion then the execution halts and "error" is output.

To perform chang¢/_eV(i, k, h) it suffices to perform

delete(i, h) followed by insert(i, k, h). Note, this means
the next item in the certification tra;l is read. Also,

the checks associated with both these two operations

are performed and the execution halts with "error"

output if any check fails.

To perform deletemin(h) the 0th array pointer is
traversed, to the head of the list and the next node

in the list is accessed. If there is no such node then

"empty" is returned and the operation is complete.

Otherwise, suppose the node is Y and suppose it con-

tains the ordered pair (i, k), then the node Y is deleted

f_om the list, the ith array pointer is set to nil, and

(i, k) is returned.

Lastly, to perform member(i, h) the ith array pointer
is examined. If it is nil then false is ret.urned, other-

wise, true is returned. The predecessor(i, h) operation

is not used in the second execution.

This completes the description of the second exe-
cution. To show that what we have described is a cor-

rect implementation of the certification trail method

requires a proof. The proof has several parts of varying

difficulty. First, one must show that if the first execu-

tion is fault-free then it outputs a minimum spanning

tree. Second, one must show that if the first and sec-

ond executions are fault-free then they both output

the same minimum spanning tree. Both these parts of

•.= " ca..* a

"."._ ._ .'._',.r.sj

(a) (b)
_2 2 450 "..

450 3

s 505

s! 800 s .__]

7 800 __
,.-_

Figure 4: Example of the data structure used in the
second execution of MINSPAN. "_

the proof are not difficult to show.

The third mote subtle part of the proof deals with i

the si_t,ation in which only the second execution is

fault-free. This means an it, correct certification trail

may be generated in the first execution. In this ease, :_

we must show that the second execution outputs ei-

ther the correct minimum spanning tree o: "error'.

The checks that were described above have been care-

fully designed to assure precisely this property by de-

tecting any errors _.hat would prevent the execution

from generating the correct output. Because of space

restrictions we wLll not give the proof here.

3.0.5 Time complexity comparisons of the two
executions

In the first execution each data structure operation

can be performed in O(log(n)) time where Ivl = ,_.

There are at most O(m) such operations and O(m)
additional time overhead where IE[ = m. Thus, the

first execution can be performed in O(mlog(n)) We

note that this algorithm does not achieve the fastest

known asymptotic time complexity which appears in

[10]. ]lowever, the algorithm we have presented has a

significant] ._maller eotlstant of proportionality which

makes it competitive for reasonaHv sized graphs. In

addition, it provides us with a relatively simple and

illustrative example of the use of a certification trail.

It should be mentioned that we have developed a more

complex certification trail solutiol_ for an asymptoti-

cally faster minin_un_ spanning tree algorithm which

uses fibonacci heaps.

42x
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In the second execution each data structure oper-

ation can be performed in 0(1). There are stiU at

most O(m) such operations and O(m) additional time

overhead. Hence, tile second execution can be pet-

formed in O(m) time. In other words, because of the

availability of the certification trail, the second ezecu.

tion i8 per/ormed in linear time. There are no known

O(m) time algorithms for the minimum spanning tree

problem. Koml6s was able to show that O(m) com-

parisons suffice to find the minimum spanning tree.

However, there is no known O(m) time algorithm to

actually find and perform these comparisons. Even

tile related "verification" problem has no known lin-

ear time solution. In the verification problem the input

consists of an edge weighted graph and a subtree. The

ouput is =yes _ if the subtree is the minimum spanning

tree and =no _ otherwise. The best known algorithm

;'¢,r this problem was created by Tarjan [25] and has

the nonlinear time complexity of O(,m(m, n)), where

.a(m, n) is a functional inverse of Ackerman's function.
The fact that the data in a certification trail enables

a mininmm spanning tree to be found in linear time

is, we believe, intriguing, significant, and indicative of

the great promise of the certification trail technique.

3.1 Concurrency of Executions

In some cases, it is possible to start the second execu-
tion before the first execution has terminated. This is

a highly desirable capability when additional hardware

is available to run the second execution (for example,

with multlprocessor machines, or machines with co-

processors or hardware monitors).

In the case of the minimum spanning tree prob-

lem, the two executions can be run concurrently. It

is only necessary for the second execution to read the

certification trail as it is generated - one item number

at a time. Thus there is a slight time lag in the sec-

ond execution. This potential for concurrecy has been

found in other problems we have examined, e.g., the

Huffman tree problem.

An additional opportunity for overlapping execu-

tion occurs when the system has a dedicated compara-

tot. In this case it is sometimes possible for the two

executions to send there ot:tput to the comparator as

they generate it. For example, this can be done in the

minimum spanning tree problem where the edges of

the tree can be sent individually as they are discov-

ered by both executions.

4 Comparison of Techniques

The certification trail approach, whether implemented

in hardware or software or some combination thereof,

has resemblances with other halt tolerant techniques

that have been previously proposed and examined, but

in each case there are significant and fundamental dis-

tinctions. These distinctions are primarily related to

the generation and character of the certification trail

and the manner in which the secondary algorithm or

system uses the certification trail to indicate whether

the execution of the primary system or algorithm was

in error and/or to produce an output to be compared

with that of the primary system.

To begin, we compare the certification trail ap-

proach to N-version programming[8, 4]. This approach

specifies that N different implementations of an al-

gorithm be independently executed with subsequent

comparison of the resulting N outputs. There is no

relationship among the executions of the different ver-

sions of the algorithms other than they all use the

same input; each algorithm is executed independently

without any information about the execution of the

other algorithms. In marked contrast, the certification

trail approach allows the primary system to generate a

trail of information while executing its algorithm th.'."
is critical to the secondary system's execution of its

algorithm. In effect, N-version programming can be

thought of relative to the certification trail approach

as the employment of a null trail.

A software/hardware fault tolerance technique called

the recovery block approach [20, 2, 17] uses acceptance

tests and alternative procedures to produce what is to

be regarded as a correct output from a program. When

using recovery blocks, a program is viewed as a being

structured into blocks of operations which after exe-

cution yield outputs which can be tested in some in-

formal sense for correctness. The rigor, completeness,

and nature of the acceptance test is left to the program

designer [2]. Indeed, formal methodologies for the def-

inition and generation of acceptance tests have thus

hr not been fully established. Regardless. the certifi-
cation trail notion of a sec,Jndarv svstel,1 that receives

the same input as the primary system and executes

an algorithm that takes advantage of this trail to ehS-

ciently produce ,he correct output and/or to indicate

that the execution of the first algorithm was correct

does not fall into the category of an acceptance test.

Recently Blum and Kannan[7] have defined what

they call a program checEer. A program checker is
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an algorithnlwhich checksthe output ofanother algo-

rithm for correctness and thus it is similar to an accep-

tance test in a recovery block. An example of a pro-

gram checker is the algorithm developed by Tar ian[2S ]

which takes as input a graph and a supposed mini-

mum spanning tree and indicates whether or not the

trre actually is a minimum spanning tree. The Blum

sad Kannan checker is actually more general than this

because _it is allowed to be probabilistic in a care-

fully specified way. There are two main differences

between this approach and the certification trail up-

proach. First, a program checker may call the algo.
rithm it is checking a polynomial number of times. In

out approach the algorithm being checked is run once.

Second, the checker is designed to work for a prob-

lem and not a specific algorithm. That is, the checker

design is based on the input/output ipecification of a

problem. The certification trail approach is explicitly

algorithm oriented. In other words, a specific algo-
rithm for a problem is modified to output a certifi-

cation trai]. This trail sometimes allows the second

execution to be faster than any known program check-
ers for the problem. This is the case for the minimum

spanning tree problem.

Space limitations preclude comparisons with the

following other relevant techniques: watchdog proces-

sors [18, 6], algorithm based fault tolerance [13], exe-

cutable assertions [3].

5 Concluding Discussion

We have presented a new, powerful fault tolerant com-

puting technique called the certification trail approach.

Our description of this technique has been only in

terms of applications to software fault tolerance, but

the certification trail approach can also be implemented
with hardware• We have illustrated the certification

trail technique by applying it to a minimum spanning

tree algorithm. The full version of this paper includes

applications to a Huffman tree algorithm, and a con-

vex hull algorithm. ]t should be understood that the

approach is in no way limited to these algorithms. We

believe that our consideration of these algorithms gives

insight into the significance and desirability of the ap-

proach. We have found several other algorithms to

which our techniques apply including an algorithm for

the shortest path problem and we believe the technique
will be widely applicable. We have also examined the

general problem of "c-.rtifying" data structure opera-

4_

tions as discussed above and have proven results for

additional data structures. These results are impor.

rant because they allow the certification trail approach

to be applied to an)" algorithm which uses one of these
data structures.

In the problem discussed an asymptotic speed up
was achieved between the first execution and the sec.

ond execution which wa._ greater than any constant

factor,We note,however, even ifthe speed up were

only by a constant factor, it would still make sense

to use the technique because execution time would be

saved. We also note that the certification trail tech-

nique can be used in conjunction with other software

fault tolerance techniques. For example, multlph al-

gorithms can be developed which generate and read

multiple (but different) certification trails. Further,
these algorithms could be written by separate teams of

individuals. A general architecture for the interaction

of these algorithms is an important research topic. For

example, a "cascade" of algorithms numbered from 1

to N could be designed such that algorithm i sends

a certification trail to i + 1 which allows i + 1 to run

faster than i. When errors are detected, other ver-

sions of algorithms can be invoked which may use an

earlier certification trail or ignore it. The ideas devel-

oped in recover)" blocks and N-version programming

among others could be used as guidance in exploring
such issues.
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Figure I: Certification trail method.
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output such that (d, s) E P.

Definition 2.2 Let P : D --, S be a problem. A so]u-
tlon to this problem using a certification {rail consists
of two functions FI and F2 with the following domains
and ranges FI : D --. S x T and F= : D x T ---,
S L/{error}. T is the set of cergl)_cafion IrailJ. The
functions must satisfy the following two properties:

(1) for ILl] d E D there exists a _ S and
there exists _ _ T such that

F,(d) = (,,_)and F,(d,_)=, and (d,,) _ P
(2) for all d 6 D and for _ t _ T

either(_,(d,_)=, and (d,,)_ P) or
F,(d,_)= er,or.

We also requi_e that F_ and F_ be implemented
so that they map elements which are not in their re-
spective domains to the error symbol. The definitions
above assure that the error-detectlon capability of the
eertL_cation-trail approach is similar to that obtained
• rith the simple time-redundancy approach discussed
earlier. (That is, if transient hardware faults occur
dung only one of the executions then either an er-

• or _ be detected or the output will be correct.) It
should be further noted, however, the examples to be
considered will indicate that this new approach can

Save overall execution time.

Observant readers of our earlier paper [II] in which
_e introduced the notion of a certhbcation trail might
have noticed that our certification-trall solution for the

_-spannhag tree w_ generalizable. The generalised
technique allows one to generate a certification tra_

_i°[many algorithms which use a balanced binary tree
ata structure. However, the technique relies on the

e_cient execution of the predecessor operation and
me data structures such as heaps cannot execute
• predecessor operation ef_clently. The techniques

escribed in this paper a_e even more general and pow-
trfal, sad they do apply to heaps.

. The degree of diversity or independence achieved
_hen using certL_cation trails depends on how they

are used. A failer discussion of this and of the re-

lationship between certification trail, and other at>-
_roaehes to software fault tolerance is contained in the

expanded version of [II]. This current paper presents
asymptotic analysis which shows that the certL_catlon-
tr_il approach is deshable even when the overhead of
generating the certification-trall is included. We are
currently working on an experimental analysis of the
method and halti,,1 resets are quite promising.

3 Answer-Validation Problem for

Abstract Data Types

Otir general approach to applying certification trails
uses the concept of an abstract data type. Some exam-
pies of abstract data types are given later in this paper.
Here we mention some important common properties
and give a short illustration. Each abstract data type
has s we]] defined data object or set of data objects,
and each abstract data type has a carefully defined fi-
nite collection of operations that can be performed on
its data object(s). Each operation takes s finite num-
ber of arguments (possibly ,ero), and some but not
all operations return answers. An example of an ab-
stract data type is a priority queue. The data object
for s priority queue is an ordered pair of the form (i,k)
where i is an item number and k is s ]_ey value. A pri-
ority queue has two operations: insert(i,k) and ddmha.
The insert operation has two arguments: item number
i and key value k. The insert operation does not return
an answer. The ddmin operation has no arguments,
but it does return an answer. The precise semantics
of these operations are given later in this paper.

For each abstract data type we define an a_er-
¢clidation problem. Intuitively, the answer validation
problem consists of checking the correctness of s se-
quence of supposed answers to a sequence of opera-
tions performed on the abstract data type. More for-
really, the input to the answer-validation problem is
a sequence of operations on the abstract data type
together with the arguments of each operation. In ad-
dition, the sequence contains the supposed answers for
each of the operations which return answers. In par-
ticular, each supposed answer is paired with the oper-
ation that is supposed to return it. Examples of such
inputs are given ha the columns labelled "Operation _
and "Answer _ of table 1 and table _.

The output for the answer-validation problem is
the word "correct" if the answers given in the input
match the answers that would be generated by actually
performing the operations. The output is the word
"incorrect" if the answers do not match. It is also

useful to allow th.e output word to say "ill-formed =.
This output is used if the sequence of operations is Ul-
formed, e.g., an operation has too many arguments or
an argument refers to an inappropriate object.

P_A_:_BLANK NOT FII.ME_
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Abstract

Certification Trails for Data Structures

Gregory F. Sullivant

Gerald M. MLsson 2

Dept. of Computer Science,Johns Hopkins Univ.,Baltimore,MD 21218

Certification trails ere a recently introduced and promis-

ing approach to fault detection and fault tolerance Ill].
In this paper, we significantly generalise the applica-
bility of the certification tral] technique. Previously,
certification trails had to be customised to each algo-

rithm application, but here we develop trails appro-
priate to wlde classes of algorithms. These certifica-
tion trails are based on common data-structure oper-
ations such as those carried out using balanced binary

trees and heaps. Any algorithm using these sets of
operations can therefore employ the certification tr,dl
method to achieve softwarefaulttolerance.To exem-

plifythe scope of the generalisation of the certification
trail technique provided in this paper, constructions of
traiLs for abstract data types such as priority queues
and unlon-find structures will be given. These trails

are applicable to any data-structure implementation of
the abstract data type. It wRl also be shown that these
ideas lead naturally to monitors for data-structure op-
eratlons.

Keywords: Software fault tolerance, error monitor-
ing, certH_cationtrails,design diversity,data struc-
tures.

1 Introduction

In this paper we significantly generalize the novel and
powerful certification-trall technique for achieving fault
tolerance in systems that was introduced in {11]. AI-
though applicable to both hardware and software, we
restrict our discussion of the certification-trail tech-

nique in the following to software fault tolerance. To
explain the essence of the certification-trailtechnique
for software fault tolerance, we will first discussa sim-

pler fault-tolerant software method. In this method
the spechScation of s problem is given and an algo-
rithm to solve it is constructed. This algorithm is ex-

ecuted on an input and the output is stored. Next,
the same algorithm is executed again on the same in-
put and the output is compared to the earlier output.
If the outputs di_er then an error is indicated, other-
wise the output is accepted as correct. This software
fault tolerance method requires additional time, so-
called time redundancy [8, 101; however, it requires no

1 Reseat'oh paxtlally supported by NSF Grants CCR-8910S69
and CCR-8908092.

3Ftc_eaxch partiffilIy supported by NASA Grant NSG 1442.

additional software. It is particularly valuable for de-

tecting errors caused by transient fault phenomena. If
such faults cause an error during only one of the ex.
ecutions then either the error willbe detected or the

output will be correct. The second possibility, of unde.
tected faults, occurs when the output of the execution
isunaffectedby the (suits.

The certi_cation-tra_] technique is designed to ob-

tain similar types of error-detection capabilities but

expend fewer resources. The central idea, as illus.
trated in Figure 1, is to modify the first algorithm
so that it leaves behind a trail of data which we call a

certi_calion trail. This data is chosen so that it can al-
low the the second algorithm to execute more quickly

and/or have a simpler structure than the first algo-
rithm. As above, the outputs of the two executions

are compared and are considered correct only if they
agree. Note, however, we must be careful in defining
this method or else its error detection capability might
be reduced by the introduction of data dependency
between the two algorithm executions. For example,

suppose the first algorithm execution contains an ertoz
which causes an incorrect output and an incorrect trail

of data to be generated. Further suppose that no afro:
occurs during the execution of the second algorithm. It
still appears possible that the execution of the second

algorithm might use the incorrect trail to generate an
incorrect output which matches the incorrect output
given by the execution of the first algorithm. Intu-
itively, the second execution would be "fooled" by the
data left behind by the £rst execution. The definitions

we give below exclude this possibility. They demand
that the second execution either generate a correct an-
swer or signal that an error has been detected in the
data trail.

d.t
Formal Definition of a Certi-

fication Trail

In this section we willgive a formal definition of a
certification trail and discuss some aspects of its real-
izations and uses.

Definition 2.1 A problem P is formali;ed as a rela-
tion, i.e., a set of ordered pairs. Let D be the domain

(that is, the set of inputs) of the relation P and let
S be the range (that is, the set of solutions) for the

problem. We say an algorithm A solves a problem P
iff for all d E D when d is input to A then an a E S is

: -£
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The answer-validation problem is similar to the
idea of an acceptance test which is used in the recovery-
block approach [0, 2] to software fault tolerance. The
main difference is that an answer-validation problem is

dependent upon a ,equenc¢ of answers, not just an in-
dividual answer. Hence, if an incorrect answer appears

in the sequence, it may not be detected immediately.
It is guaranteed, however, that an incorrect answer
will b_ detected at some point during the processing
of the entire sequence. By s_lowing for this latency in
detection, it is possible to create a much more emcient
procedure for solving the answer-validation problem.

In this paper we shall solve the validation problem
for two abstract data types. In the full version of this
paper we solve the snswer-valldstion problem for more

gcnera_ data types [12].

The most important aspect of the answer-valldation
problem is that it is often possible to check the cor-
rectness of the answers to a sequence of operations
much more quickly than actually calculating what the
answers should be from scratch. In other words, the

answer-validation problem has a smaller time complex-
ity than the original abstract-data-type problem. For
example, to calculate the answers to s sequence of n
priority-queue operations takes fl(nlog(n)) time, how-
ever it is possible to check the correctness of the an-
swers in only O(n) time. This speedup is very useful
in fault-detection applications.

It is possible to run an answer-validation algorithm
for some abstract data type concurrently with some
algorithm which uses the abstract data type. The
answer-validation algorithm could act as a monitor
making sure that all interactions with the abstract
data type are handled correctly. This is valuable be-
cause many algorithms spend a large fraction of thdr
time operating on abstract data types. Note, the over-
head of this monitor is less than the overhead of ac-

tually performing the data-type operations a second
time.

One possible application of the answer-validation
problem occurs when it is used in conjunction with a
repairable data structure which aUows for repair but
does not automati_lly attempt to d-.tect faults [16].
Suppose an abstract data type is implemented with
a repairable data structure. One can use an answer-
validation procedure to detect errors in the answers
generated b.v the abstract data type. When an er-
ror is detected, a repair of the data structure can be
attempted. In some cases, recovery and continued ex-
ecution will be possible.

lr, the next section, we will show how to create cer-
tification trails for programs which use abstract data
types when those data types have efficient solutions
for their answer-validation problems.

4 Schema for using Certification
Trails

Suppose that we have developed an et_cient solution to
the answer-validation problem for some abstract da_L
t.v-_-. By e_cient we mean the time comphxity of
tl,t answer-validation problem is smaller tl,an the tlm¢
complexity of the original abstract-data-type problem.

Further, suppose that we wish to run an algorithm,
say A, which uses that abstract data type. To apply
the certification trail method we can use the following
schema to yield the two executions:

First Execution:

Execute algorithm A.

Each time an abs'.ract-dsta-type operation is performe:.,
append to the certification trail the identity of the op-
eration, the arguments and the answer.

Second execution:

Phase One:

Validate the correctness of the operations and sup-
posed answers give.', in the certification trail. If the
validation returns "incorrect" or "ill-formed" then out.

put Uerror" and stop. Otherwise, continue.

Phase Two:

Execute algorithm A.
Each time an abstract-data-type operation is performed,
read the next entry in the certifcation trail. Make sure
that the operation and the arguments in the certifica-
tion trail agree wi_h those requested in the algorithm.
If not output "error _' and stop. Otherwis.-, use the

answer given in the certification trail and continue.

In the final step the outputs from the two execu-
tions are compared and :he output is accepted or an er-
ror is signaled. This schema can yield execution times
which arc significantly faster than the execution tlm¢
obtained by running algorithm A twice, yet these two
method: give similar fault detection capabilities. That
i=, if transient hardware faults occur during or, Lv one
of the executions then either an error will be d'.tected

or the output will be correct. Note, the first execution
can be slower than a simple execution of algorithm
A since it must output a certification trail. However,
the second execution can be significantly faster than
a simple execution of the algorithm since the interac-
tions with the abstract data type take less time overall.
Th.- _-t effect can be a major spe_'dup.

Suppose an algorithm uses multiple abstracl data
types and suppose there are efficient answer-validation
algorithms for each of these abstract data types. It is
easy to see how our method generalize:.. We can leave
behind a generalized certification trail which ¢onsis:s
of s separate certificatior trail for each of the abstrac_
c'ata types. The effect on the speedup of the second
execution will be cumulative.

-- P_ II_P_E I_ILANg l_i_T F_L_ED
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Figure 2: Union Tree and with Find Edges

5 Answer Validation for Disjoint-
Set Union

As our first example we will discuss the disjoint-set
union problem. This problem concerns a dynamic cob
lection of sets in which palts of sets cam be combined

to yield new sets. The underlying universe of set d-
ements consists of the integers ¢,om I to n inclusive.
Kiso, the universe of set names consists of the integers
from 1 to n inclusive. There are three operations that
can be performed:

eteate(A,x) creates a singleton set named A which
contains element x. Since sets must be disjoint we
require that x not already be in some set.

union(A,B) creates a new set which is the union
of the sets named A and B. This new set is called A

and the set named B becomes undefined. It is requited
that the sets named A and B are originally defined and
we disjoint.

find(x) returns the name of the set which contains
element x. It is requited that x be a member of some
Unique set.

If an operation violates one of the requirements
described above then it is considered to be ill-formed.

Also, if an operation has the wrong number or type of
arguments it is considered to be ill-formed.

In table 1 we give an example of a sequence of
disjoint-set-union operations together with the answers
for find operations. In addition, the collection of sets

.depicted as it is changed by the operations. For tim-
licity, in this example each set name corresponds to

the integer originally contained in the set when it is
created. Sets are listed by first giving the name of the
set followed by a colon and then the contents of the
set.

The disjoint-set-union problem is a d_sic problem
_kich has many application. [4] such as the off--line

Operation Answer Status of sets

I: I

create(2,2)
unlon(1,2) I:{I,2}
find(2) 1
create(3,3) 1:(1,2),3:(3)
create(4,4) 1:'[1,2),,3:,[3},4:{4}
create(5,5) |:,I1,2},3:{3},4:{4},5:{5}

union(5,3) 1:(1,2},4:{41,5:{3,5}
unlon($,l) 4:{4},5:{1,2,3,5}
find(2) 5
find(5) s
crcat¢(6,6) 4:{4},5:{1,2,3,5),6:{6}
unlon(4,6) 4:{4,0},5:{1,2,3,5}
create(7,7) 4:(4,0},5:{1,2,3,5},7:{7}
unlon(4,7) 4:{4,6,7},5:{1,2,3,5}
find(e) 4

Table 1: Sequence of operations for a Disjoint Set
Union

mln problem, connected components, least-common
ancestors, and equivalence of finite automata. Of pat-
ticular interest is the tlme-eomplexJty of performing a
sequence of operations. Let us say the total number of
operations is m, which is assumed to be greater than
or equal to n. Recall, n is the number of set elements
and set names.

Tarjan gave the tight upper bound of O(mo(m, n))
[13, 14] for this problem. The a refers to the inverse
of Ackermann's function which is s very slowly grow-
ing function. His solution and earlier solutions used

a path-comprexsion heuristic [15]. Fredman and Saks
gave a lower bound of f/(m_(m, n)) [S] in a general
cell-probe model Gabow and Tatjan show how to
solve some important special cases of this problem in
O(m) time [6].

We now consider the answer-valldatlon problem for
the disjoint-set-unlon data type. We win show that
this problem can be solved in O(m) time where m
is the number of operations. Note, this time com-
plexity is superior to the complexity of actually per-
forming the sequence of operations as discussed above.
One method for solving this problem in O(m) time
uses the powerful techniques of Gabow and Tarjan [6].
However, we shall present a simpler method with a
small constant of proportionality that is tailored to
tiffs problem.

To solve this problem we will build a forest based
on the union operations in the sequence. In addition,
we shall add edges to this forest based on the tlnd
operations. As a final step we will perform a traversal
of the forest and perform appropriate checks. The solid
edges in figure 2 indicate the forest we would build for
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the set of operations given in table 1. The dashed
edges indicate the edges we would add to the forest
based on the find operations.

Algorithm for Answer Validation l'or Disjoint-
Set Union

Input: sequence of m operations together with argu-
meats and supposed answers for the disjoint-set union
data type.
Output: "correct', "incorrect" or "ill-formed"

Declarations: Type /reenode has fields left and right.
Type treeleafconts_ns a llst of pointers such that each
pointer points to a treenode or a treeleaf. Array ac-
_i1"eaet is indexed by set name. Each array element is

a pointer to a treenode or a treeleaf. Array wher_iJ is
indexed by an element number. Each array element
is a pointer to a treeleaf. Initially, all pointers are nil
and lists are null.

In the first phase of the algorithm we process each op-
eration as it appears serially using the following rules:

create(A,x): If activeset[A] or whereis[x] are non-n;]
then output "ill-formed" and stop. Otherwise, allocate
a treeleaf and set active.set[A] and whereis[x] to the
allocated node.

union(A,B): If activeset[A] or activeset[B] are nU then
output "ill-formed" and stop. Otherwise, allocate a
treenode and set left to active.set[A] and right to ac-
tiveset[B]. Next set activeset[A] to the treenode and
set active.set[B] to nil.

find(x) A: (where A is the supposed answer to the
find.) If whereis[x] is nil then output "ill-formed".
Otherwise, whereis[x] points to some treeleaf. Call it
tleaf. If activeset[AJ is nil then output "ill-formed'.
Otherwise, activeset[A] points to some treeleaf or treen-
ode. Call it t. Add a pointer to t to the list of pointers
contained in treeleaf.

In the second phase of the algorithm we shall traverse
the structure we have built.

Scan thru the array actlve.set to find non-nil pointers.
It is not hard to see that each non-nil pointer points
to the root of a tree made up of nodes of type tnode
and tleaf. The tree uses the edges in the left and right
fields of tnode.

For each such tree perform a depth-first search. When-
ever the search reaches a node of type tiered"traverse
the List of pointers that it contains. Check that each
pointer points to a node which is currently on the stack
which is used to perform the depth-first search. This is
equivalent to checking that each pointer in tleaf points
to a node which is an ancestor of tleaf in the tree.

If some pointer does not point to an ancestor then out-
put "incorrect" and stop. Otherwise, output "correct"
and stop.

Theorem $.1 The algoP, thrn /or an_u,er palidalion o/
the disjoint-Jet.union abstr_act data type i_ cor_ct.

Theorem 5.2 The anJu, er validation algorithm/or dij.
joint ac! union ha_ a time cornplezitlt of O[n,) /or pro.
ceasing a Jequencc of m openationj.

We omit these two theorem., which overall are not
difficult to show. We comment on one aspect of ira.
plementation. In the second phase of the answer vali.
dation algorithm it is necessary to determine if certain
nodes are on the stack during the tree traversal. This
can be done efficiently as follows: First, each treen.
ode and each treeleaf can be assigned a unique iden-
tifier in the range 1 to m as it is allocated. Next, a
boolean vector of size m indexed by the unique iden-
tifiers described above can be allocated. This vector

can be used to keep track of which nodes are on the
stack during tree traversal by turning bits on and off'.
This modified tree traversal algorithm still takes 0(m)
time.

6 Generalized Priority Queue

We now describe a somewhat general abstract data
type. We will solve the answer validation problem for
restricted versions of this data type. The data consists
of a set of ordered pairs. The first element in these or.
dered pairs is referred to as the item number and the
second element is called the key value. Ordered pairs
may be added and removed from the set, however; at
all times the item numbers of distinct ordered pairs
must be distinct. 1l is possible, though, for multiple
ordered pairs to have the same key value. In this pa-
per the i:cm numbers are integers between 1 and n,
inclusive. Our default convention is that i is an item
number, k is a key value and h is a set of ordered pairs.

A total ordering on the pairs of a set can be defined
]exicographically as follows: (i,k) < (i',k _) iff k < k t
or (k = k _and i < it). The abstract data types we will
consider support a subset of the following operations.

member(i) returns a boolean value of true if the set
cont_.ins an ordered pair with item number i,
otherwise returns false.

insert(i,k) adds the ordered pair (i,k) in the set. We
require that no other pair with item number i be

in the set.

delete(i) deletes the unique ordered pai r with i;em
number i from the set. We require that a pair
with item number i be in the set initially.

cha._geke.v(i, k) is executed only when there is an or-
dered pair with item number i in the set. This
pair is replaced by (i, k).

244
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T Operation Answer

1 insert(6,300)
2 insert(2,404)
3 insert(3,250)
4 deletemin

S insert(10,248)
6 insert(12,245)
7 insert(4,260)
8 deletemin

9 insert(13,140)
10 insert(5,142)
11 deletemin
12 deletemin
13 deletemin
14 dcletemin

Validation stack

(3,2so) (3,250,4)

(12,245) (12,245,8),(3,250,4)

(13,140) (13,140,11),(12,245,8),(3,250,4)
(5,142) (s,142,12),(12,24s,8),( ,2so,4)
(10,248) (I 0,248,13),(3,250,4)
(4,260) (4,260,14)

Table 2: Sequence of Priority Queue operations illus-
trating answer validation algorithm

deletemin (or ddetemax) returns the ordered pair which
is smallest (or largest) according to the total o:-
der defined above and deletes this pair. If the
set is empty then the token "empty" is returned.

rain (or max) returns the ordered pair which is small-
est (or largest) according to the total order de-
fined above. If the set is empty then the token
"empty" is returned.

If an operation violates one of the requirements de-
scribed above then it is considered to be ill-formed.

Also, if an operation has the wrong number or type of
arguments it is considered to be Kl-formed.

Many different types and combinations of data strut-
tutus can be used to support difiºerent subsets of these
operations efficiently.

7 Answer Validation for Prior-

ity Queue

We will first consider the priority-queue abstract data
type which allows only two operations: insert and
deletemin. An example of s sequence of such oper-
salons appears in table 2. Many different data struc-
tures can be used to implement priority queues includ-
hag heaps [17], balanced search trees such as AVL trees
[11, red-black" trees [7], or b-trees [3}. It is possible to
process a sequence of O(n) operations in O(nlog(n))
time using the data structures above. Furthermore,
there is a lower bound of f_(n log(n)) because it is pos-
slble to sort using a priority queue. Remarkably, the
answer-validation problem can be solved using only
O(n) time, as documented below.

Each operation is time-stamped, i.e., the opera-
tions are assigned integers sequentially starting with
I which is easy to do with a counter. The answer-
validation algorithm uses a stack called deletestack.
The contents of this stack are illustrated in table 2.

The top of the st_.k is on the left in table 2.
Let us consider the kinds of tests that an answer-

validation algorithm for a priority queue might per-
form. Suppose (i,k) is the answer to some deletemin
operation. Further, suppose (i',k') was deleted in a
previous de]uremia operation. If the priority queue is
correct then either (i,k)>(i',k') or (i',k') was deleted
before (i,k) was inserted. This suggests that the time
of insertion and ddetion for elements should be recorded

and the algorithm below does this. Unfortunately, if
an algorithm compares an ordered pair which has been
ddeted against all previously deleted ordered pairs
then the algorithm complexity is at least O(rn2). To
avoid this the ddetestsck is used. The dehtestack was

designed to allow many comparisons to be done im-
pU¢itly and to reduce the complexity.

Algorithm for Answer Validation for Priority
queue

Input: sequence of O(n) operations together with ar-
guments and supposed answers for the priority-queue
data type.
Output: "correct', "incorrect" or "ill-formed"

Declarations: Array called inserttime indexed by item
number. Array dements contain either "absent" or
s time-stamp. Array called /celrvalue indexed by item
number. Array dements contain either "absent" or
a key value. Laitia]ly, each element in these two sr-
rays contains "absent". Stack of ordered triples called
deletestack. Each ordered triple has the following form:
first element is an item number, second element is a
key value, and third element is a time-stamp, deletes-
tack is initially empty.

In the first phase of the algorithm we process each op-
eration as it appears serially using the following rules:

Let currenttime refer to the time-stamp of the opera-
tion being processed.

insert(i,k): If inserttime[i]_'absent" then output "ill-
formed _ and stop. Otherwise, let inserttime[i] = cur-
renttime and let kcyvalue[i]=k.

deletemin (i,k): (where (i,k) is the supposed answer
to the deletenfin operation.) If inserttime[i}='at)sent"
or keyvalue[i]_k then output "ill-formed" and stop.

Otherwise, let (i',k') be the item number and key
number of the triple on the top of deletestack (if there
is one). Repeatedly pop the stack until (i,k)<(i',k') or
until deletestack is empty.

If deletestack is empty then pnsh the triple
(i,k,currenttim¢) onto deletestack. Further, let insert-
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time[i]='absent" and let key_ueIi]='absent" and pro-
¢ess the next priority queue operation.

Ifdeletestack is non-empty then let the top dement
be (i',k',deletetime'). If inserttime[i]<deletetim¢' then

output "incorrect n and stop. Otherwise, push the
triple (i,k,currenttime) onto deletestack. Next, let in-
serttime[i]-%bsent" and let keyvalue[i]-"absent" and
process the next priority queue operation.

In the second phase of the algorithm we operate
on the items which have been inserted but have never
been deleted.

Scan the array inserttime and for each item number
for which inserttime[i]_"absent" construct an ordered
triple (i,keyvs.lue[i],inserttime[i]). Call this set of or-
dered triples remainders.

Use a bucket sort to sort the triples in remainders by
their time-stamps, i.e., the third element of the ordered
triple.

Merge the triples in remainders together with the triples
in deletestaek so that they are nil ordered by their
time-stamps, i.e., the third element of the ordered
triple.

Scan the combined triples to determine if there exist

two triples which satisfy the following: inserttime[i]<
deletetime' and (i,keyvalue[i])<(it,k,); where one triple
is from remainders and has the form (i,keyvMue[i],
inserttime[i]) and where the other triple is from deletes-
tack and has the form (i',k',ddetetime');

If these two triples exist then output "incorrect" and
stop. Otherwise output "correct" and stop.

Theorem 7.1 The algorithm/or answee validation of
the priority queue abstract data type is correct.

Proof: Clearly the algorithm for answer vaiidation
always terminates. We must show that the algorithm
outputs "correct" iff the operations together with ar-
guments and supposed answers are correct. Because of
space limitations we will only give a proof for the more
difficult hMf of this iff statement. We shall use a proof
by contradiction. Assume that the sequence of opera-
tions, asguments and supposed answers is considered

correct by the algorithm but actually is incorrect. The
use of the array inserttime and the symbol "absent _
assures that no item is deleted when it is absent or in-
serted when it is already present. The use of the array

keyvMue assures that items do not change keyvaiue
when they are present in the data type set. There is
only one remaining way in which a sequence can be
incorrect. This occurs when an ordered pair is deleted
by a deletemin operation, however, it does not realJy
have the sinai]eat key value.

This means, there exist ordered pairs (it,kl) and
(i2,ka) such that (il,kx)>(i2,k2) and (ix,kt) is deleted
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while (i2,k:) is present in the data type set. In addi.
tion, we may specify that (it ,kt ) is th, largest ordered
pair deleted while (i2,k_) is present. Let ins1 be the
time that il was inserted and let delj be the time that
it was deleted. Let ins: be the time that i3 was in-

serted and let del2 be the time that i2 was deleted (if
it was deleted). There are two cases.

Case 1: Suppose that (i2,k2) is ultimately deleted.

We know that (it ,kl )> (i2 ,k :) by assumption, del2 >dale
since item i2 is deleted aft¢_ item il. ins,<dell state
item i3 was present when item it was deleted.

Consider the situation when item i2 is deleted with

a deletemin operation. The ordered triple for item il
must appear in deletestack just before the processing
of the i2 deletion operation. This follows because the
triple for item it can only be removed from deletesta&

by a larger element and yet (it,kt) refers to the largest
ordered pair deleted while (i2,k_) was present. Now,
since (il,kt)>(i:,k2) the ordered triple for item i: will

remain in ddetestack even after deletestack is popped
during the processing of the deletemin operation for

item in. Suppose the top of deletestaek is (in,ks,data)
after the popping.

It is easy to show that the time-stamps on deletes-
tack are monotonically ordered with the largest time-
stamp at the top. For this reason we know that
dds>_delt. We noted earlier that dale>ins2. But if
ins2<dels then the algorithm outputs "incorrect" when
it processes the deletemin operation. This contradicts
our assumption that the sequence of operations, ar-
guments and supposed answers was considered correct
by the algorithm.

Case 2: Suppose the ordered pair (i2,k2) is never
deleted. In the second phase of the algorithm the or-
dered triple (i_,k2,ins_) is constructed and is compared
against the ordered triples in deletestack.

The same argument that was used in case 1 above
can be used to show that the test performed in the
second phase of the algorithm would detect a problem

and cause "incorrect" to be output. This contradicts

our assumption that the sequence of operations, argu-
ments and supposed answers was considered correct by
the aigo:ithm. Since both cases lead to a contradiction
our proof is complete. |

Theorem 7.2 The answee validation algorithm for prq.
oritlt queue has a tgme complezity of O(n) for pr'ocesJ.
in 9 a sequence of O(n) operations.

Proof: We first analyze phase one of the algorithm.
Note, there is a constant amount of work done for pro-
cessing each single operation if we exclude the costof

popping the deletestack. Interestingly, popping the
deletestack can take O(n) time for the processing of
a single operation. Luckily,the total amortized com-

phxity for popping the deletestack while processing a
sequence of O(n) operations is still only O(n). This
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is true because each item which is inserted and later

deleted is placed on deletestaek and is popped at most
once,

We now consider phase two. The cost of array

scanning and constructing the triples is O(n). The
cost of the bucket sort is O(n) and the cost of the
merge is also O(n). The final test can be implemented
with a simple scan with a complexity of O(n). Hence
the overall complexity is O(n) |

We have solved the answer-valldation problem for
abstract data structures that support the following set
of operations: member, insert, delete, deletemin, man,
de]etemax, and max. The algorithm used to solve this
problem is intricate but ei_cient. It requires only O(n)
time to process O(n) operations. A detailed descrip-
tlon of our solution, however, is beyond the scope of
thisversionofthe paper.
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8 Conclusions

The resultsreported in this paper significantlygen-
eralizethe applicabilityof the certification-trailtech-

nique. In our previouslyreported work on certification

trails [II], we had to customize each algorithm appli-
cation, but we have now developed trails appropriate
to wide classes of Mgorithms. These certification trails
ate based on common data-structure operations such
as those carried out using balanced binary trees and
heaps. Any algorithm using these setsof operations

can thereforeemploy the certificationtrailmethod to
achieve software faulttolerance. To express the full

generalityof these ideas,we have provided construc-

tionsof trailsfor abstractdata types such as priority
queues and union-findstructures.These trailsare ap-

plicableto any data-structure implementation of the
abstract data type. These ideas lead naturally to mon-
itors for data-structure operations. We are currently
worlting on an experimental evaluation of the approach
and initial results are promising.
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